Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36772077

RESUMO

With a significant number of features (namely being multipurpose, inexpensive and durable), thermoplastic polymers, most often named plastics, are part of our daily routine, with an increasing production over the last decade. Among them, polyethylene terephthalate (PET), high-density polyethylene (HDPE) and polypropylene (PP) are distinguished as the five most commonly used plastics in various fields, mainly in the packaging industry. Even if it is difficult to imagine the world without plastics, the boosted plastic assembly comes with huge plastic waste, creating a number of challenges, as the most important threat for our environment, but also opportunities for recycling. Currently, a special attention is dedicated on how to improve the current recycling methods or to find new ones, since the quality of recycled plastics and potential chemical or biological contaminations are two problematic aspects. Understanding the properties of each thermoplastic polymer and the interaction with possible contaminants may be the key for an efficient recycling process. The aim of this paper was to evaluate the surface behaviour of different composite supports based on recycled PET before and after interaction with collagen (used as a biological contaminant). The surface contamination bias of PET supports was studied through different techniques: scanning electron microscopy (SEM), water uptake through swelling studies, contact angle measurements and attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR).

2.
Antioxidants (Basel) ; 13(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38247482

RESUMO

(1) Background: This study aimed to outline the antioxidant, antitumoral, and cytotoxic proprieties of various types of Perilla frutescens extracts obtained from the leaves of the species. (2) Methods: We determined total polyphenols, flavonoids and anthocyanins contents, as well as the in vitro antioxidant, antitumoral, and cytotoxic actions in three types of ethanolic extracts (E1, E2, E3) and in three types of acetone: ethanol extracts (A1, A2, A3) of Perilla frutescens according to standardized procedures. (3) Results: We found that Perilla frutescens ethanolic extracts had the highest total phenol and anthocyanins concentrations. The flavonoids concentration was not statistically different between the extracts. The iron chelating capacity, hydroxyl radical scavenging capacity, superoxide anion radical scavenging capacity, and lipoxygenase inhibition capacity showed a significant increase with higher concentrations of Perilla frutescens extracts, particularly the ethanolic extracts. Perillyl alcohol had greater cytotoxic capacity in the MG-63 cell line and E1 extract showed similar significant cytotoxic effects in the A431 cell line. (4) Conclusions: Both ethanolic and acetone-ethanol extracts from Perilla frutescens exhibited important antioxidant and antitumoral actions in vitro, which proportionally increased with concentration. The cytotoxic threshold determined in this study for various types of extracts could help determine the best dosage with the maximum antioxidant and antitumoral potential. Our results could serve as a basis for further studies that will investigate the cytotoxic effects of Perilla frutescens variants on various types of cancer cell lines.

3.
Int J Mol Sci ; 23(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36555827

RESUMO

The need for bone substitutes is a major challenge as the incidence of serious bone disorders is massively increasing, mainly attributed to modern world problems, such as obesity, aging of the global population, and cancer incidence. Bone cancer represents one of the most significant causes of bone defects, with reserved prognosis regarding the effectiveness of treatments and survival rate. Modern therapies, such as hyperthermia, immunotherapy, targeted therapy, and magnetic therapy, seem to bring hope for cancer treatment in general, and bone cancer in particular. Mimicking the composition of bone to create advanced scaffolds, such as bone substitutes, proved to be insufficient for successful bone regeneration, and a special attention should be given to control the changes in the bone tissue micro-environment. The magnetic manipulation by an external field can be a promising technique to control this micro-environment, and to sustain the proliferation and differentiation of osteoblasts, promoting the expression of some growth factors, and, finally, accelerating new bone formation. By incorporating stimuli responsive nanocarriers in the scaffold's architecture, such as magnetic nanoparticles functionalized with bioactive molecules, their behavior can be rigorously controlled under external magnetic driving, and stimulates the bone tissue formation.


Assuntos
Neoplasias Ósseas , Substitutos Ósseos , Humanos , Alicerces Teciduais , Neoplasias Ósseas/terapia , Osteogênese , Regeneração Óssea , Fenômenos Magnéticos , Engenharia Tecidual/métodos , Impressão Tridimensional , Microambiente Tumoral
4.
Medicina (Kaunas) ; 55(5)2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31108965

RESUMO

Background and objectives: Cancer is the second leading cause of death globally, an alarming but expected increase. In comparison to other types of cancer, malignant bone tumors are unusual and their treatment is a real challenge. This paper's main purpose is the study of the potential application of composite scaffolds based on biopolymers and calcium phosphates with the inclusion of magnetic nanoparticles in combination therapy for malignant bone tumors. Materials and Methods: The first step was to investigate if X-rays could modify the scaffolds' properties. In vitro degradation of the scaffolds exposed to X-rays was analyzed, as well as their interaction with phosphate buffer solutions and cells. The second step was to load an anti-tumoral drug (doxorubicin) and to study in vitro drug release and its interaction with cells. The chemical structure of the scaffolds and their morphology were studied. Results: Analyses showed that X-ray irradiation did not influence the scaffolds' features. Doxorubicin release was gradual and its interaction with cells showed cytotoxic effects on cells after 72 h of direct contact. Conclusions: The obtained scaffolds could be considered in further studies regarding combination therapy for malignant bone tumors.


Assuntos
Biopolímeros/uso terapêutico , Neoplasias Ósseas/terapia , Fosfatos de Cálcio/uso terapêutico , Quimiorradioterapia/métodos , Alicerces Teciduais , Biopolímeros/administração & dosagem , Fosfatos de Cálcio/administração & dosagem , Quimiorradioterapia/normas , Humanos , Nanopartículas de Magnetita/administração & dosagem , Nanopartículas de Magnetita/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA